CASR The University of Adelaide Australia
spacer
spacer

text zoom: S | M | L

Further Information Contact:

Centre for Automotive Safety Research
THE UNIVERSITY OF ADELAIDE
SA 5005 AUSTRALIA
Email
Location

Telephone: +61 8 8313 5997
Facsimile: +61 8 8232 4995

You are here: 

Publication Details

TitlePotential benefits of autonomous emergency braking based on in-depth crash reconstruction and simulation
AuthorsAnderson RWG, Doecke SD, Mackenzie JRR, Ponte G
Year2013
TypeConference Paper
AbstractThe objective of this study was to estimate the potential effectiveness of AEB systems using simulation of crashes drawn from Australian in-depth crash data.

104 crashes that occurred within 100 km of Adelaide, South Australia, were used to assess the potential effect of AEB systems. The crashes had been investigated at the scene, re-constructed to determine collision speeds, and in this study they were analyzed using simulation to estimate how collision speeds and injury risks would have been modified by each of several AEB systems considered.

Crash types considered were rear-end, pedestrian, head-on, right angle, right turn and a proportion of hit-fixed-object crashes. Other crash types were thought to be less responsive to the effects of AEB and were not considered.

The variation in AEB systems were described using several parameters: the range of the forward- looking zone, the angle or width of the forward-looking zone, the processing time for the system to respond to the road user or object in its path (latency), the time-to-collision (TTC) at which the system would intervene, and the strength of the intervention (the level of braking). The AEB simulation used information from the trajectory of vehicles in the 104 crash reconstructions to estimate what difference each system would have made to the collision speed in each case and for each AEB system considered. Injury risk curves were used to estimate changes in fatal and injury crash risk in each case.

The reductions in risk were weighted according to the rate of crash involvement of vehicles, based on the patterns of crashes in New South Wales for years 1999-2009.

The overall reductions in risk produced by the various AEB systems were substantial. Systems were predicted to reduce fatal crashes by 20-25% and injury crashes by 25-35%. Note that these estimates rely on assumptions about universal operability and reliability of systems.

Report NumberPaper Number 13-0152
Conference Name23rd International Technical Conference on the Enhanced Safety of Vehicle
Conference AbbreviationESV
Conference LocationSeoul, Korea
Conference Date27-30 May 2013

Reference
Anderson RWG, Doecke SD, Mackenzie JRR, Ponte G (2013) 'Potential benefits of autonomous emergency braking based on in-depth crash reconstruction and simulation', 23rd International Technical Conference on the Enhanced Safety of Vehicle, Seoul, Korea, 27-30 May 2013.